Augmenting recommendation systems using a model of semantically-related terms extracted from user behavior
نویسندگان
چکیده
Common difficulties like the cold-start problem and a lack of sufficient information about users due to their limited interactions have been major challenges for most recommender systems (RS). To overcome these challenges and many similar ones that result in low accuracy (precision and recall) recommendations, we propose a novel system that extracts semantically-related search keywords based on the aggregate behavioral data of many users. These semantically-related search keywords can be used to substantially increase the amount of knowledge about a specific user’s interests based upon even a few searches and thus improve the accuracy of the RS. The proposed system is capable of mining aggregate user search logs to discover semantic relationships between key phrases in a manner that is language agnostic, human understandable, and virtually noise-free. These semantically related keywords are obtained by looking at the links between queries of similar users which, we believe, represent a largely untapped source for discovering latent semantic relationships between search terms.
منابع مشابه
Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملBehavioral Considerations in Developing Web Information Systems: User-centered Design Agenda
The current paper explores designing a web information retrieval system regarding the searching behavior of users in real and everyday life. Designing an information system that is closely linked to human behavior is equally important for providers and the end users. From an Information Science point of view, four approaches in designing information retrieval systems were identified as system-...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIdentifying the components of the Information Resource Selection Behavior of the Members of Public Libraries Using Metasynthesis
Purpose: It is impossible to increase the use of information resources in libraries and provide user-centered information services without understanding how users select and search for information resources. selecting information sources involves identifying a subset of available information sources that best meet the information needs of users. Selecting the right source of information has a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1409.2530 شماره
صفحات -
تاریخ انتشار 2014